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1.	Introduction	
This report presents the methodology and results from a study to extract empirical 

microscopic vehicular interactions from an instrumented probe vehicle. The contributions of this 
work are twofold: first, the general method and approach to seek a cost-effective balance 
between automation and manual data reduction that transcends the specific application. Second, 
the resulting empirical data set is intended to help advance traffic flow theory in general and car 
following models in particular. 1 

Like many data reduction problems this work seeks to find a balance between automated 
and manual processing. All too often in problems like these the data reduction approach is 
chosen a priori to be either strictly automated or strictly manual. Usually manual approaches are 
inexpensive to develop but the recurring labor costs are expensive. Automated systems are 
usually inexpensive to run but only perform well when conditions meet expectations. In general 
the marginal cost becomes progressively more expensive for each unit increase in performance 
from an automated system. A robust automated system can prove to be quite expensive and may 
still yield a non-negligible error rate. So to ensure top quality data even the best automated 
system would need a human in the loop to validate the results. Herein lies the key 
methodological insight of our work: if the human is already in the loop to validate the data, 
provided care has been taken to develop the right time-efficient tools for the user, the marginal 
costs to have this human to actively clean the results should be small compared to the savings 
that can be realized in the automated system. If done right, a "pretty good" automated system to 
do the majority of the processing followed by supplemental manual cleaning (i.e., over and 
above simple validation) can produce a high quality data set that is beyond the capabilities of a 
"superior" automated system on its own while only encumbering a fraction of the labor costs 
from a "purely manual" approach.2 The generic approach to seek a cost effective balance 
between the power of the automated system and demands on the human in the loop transcends 
the particular application to instrumented probe vehicle data. 

This generic methodological approach allows us to overcome many of the constraints that 
have limited previous efforts in the specific area of collecting empirical microscopic vehicle 
interaction data. Historically automatic data extraction has not provided the precision necessary 
to advance traffic flow theory3, while the labor demands of manual data extraction have limited 
past studies to small scales4.  

The data for this study come from a probe vehicle that is instrumented with positioning 
sensors for localization and ranging sensors to perceive the ambient vehicles and measure inter-
vehicle relationships over time and space as the probe travels through the traffic stream. 
Specifically, this work develops the process of extracting vehicle trajectories from data collected 

                                                
1 As of publication the data have been posted to Coifman (2016). 
2 Since the automated system used in our data reduction is unique to the specific raw data set and this raw data set is of finite size, 
it does not make sense to find the optimally efficient balance. So throughout this paper we use "pretty good" to clearly denote that 
while there is almost certainly a "better" approach, the chosen automated approach is good enough to ensure that indeed the 
subsequent manual cleaning is far less demanding than a purely manual approach. 
3 For example, the unrealistic relationships in the NGSIM data set discussed in Section 1.1 that arose from the automated 
processing with only cursory manual validation, or the tracking errors exhibited by a more sophisticated vehicle tracking 
algorithm in Fig. 6 of Coifman et al. (1998). 
4 For example, Treiterer and Myers (1974) took several years to manually track roughly 70 vehicles over 4 minutes and 3.3 miles. 
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by three perception sensors, consisting of a pair of forward and rearward facing LIDAR sensors 
that each scan an arc of 180° in a plane parallel to the roadway and a single forward facing radar 
sensor that has greater range but only a 12° field of view. The automated processing consists of 
segmenting vehicle and non-vehicle returns in the LIDAR data, grouping the vehicle returns into 
distinct vehicles, tracking vehicles over time, and reporting the vehicle tracks in world 
coordinates. The radar sensor already tracks vehicles and only reports tracked targets, 
eliminating the post-processing based tracking for the radar data. In either case numerous errors 
remain in the automatically tracked target data that need to be cleaned by the human reviewer. 
The study data were collected over roughly two hours on a freeway during a typical weekday 
afternoon rush hour that includes recurring congestion. The probe vehicle's tour consists of two 
round trips over a 28 mi route along urban freeways. This tour passes through four separate 
major freeway interchanges involving: I-70, I-71, I-270, I-670, and SR-315; as well as many 
more interchanges with arterial roadways.  

To place the work in context, the bold curve in Fig. 1a shows a hypothetical example of a 
trajectory from a conventional probe vehicle. It includes the speed and acceleration of the 
conventional probe vehicle, but no information about the environmental stimuli that the vehicle 
responded to, e.g., the unobserved trajectories of the other vehicles that are shown with faint 
curves. With the addition of the perception sensors on the probe, as per the current study, it is 
now possible to also collect the trajectories of the leading and following vehicles too, giving rise 
to the three tracked trajectories in the lane of travel, shown with bold curves in Fig. 1c. Thereby 
yielding a lengthy sample of the instrumented probe vehicle's response to its leader and 
concurrent shorter samples of many different followers behind the probe vehicle. This plot only 
shows the probe vehicle's lane of travel, the perception sensors are also used to track vehicles in 
the adjacent lanes, typically yielding at least two trajectories per immediately adjacent lane and 
often several trajectories in further lanes (but the far lanes are often occluded by vehicles in the 
intervening lanes, so coverage of the far lanes is lower than the immediately adjacent lanes). 

This data collection is in response to a longstanding need for empirical microscopic 
traffic flow data, e.g., Haight (1963) observed that most of the literature on traffic flow theory 
was conceived in purely mathematical terms, with observational studies limited to supporting 
particular theories. While exceptions exist both then and now, most contemporary traffic flow 
theory is still built upon models that ultimately have purely mathematical origins, e.g., 
hydrodynamic models (Lighthill and Whitham, 1955; Richards, 1956) and car following models 
(Chandler et al., 1958; Gazis et al., 1961). Even though modern models are much more 
sophisticated than those when Haight made his observations over 50 years ago, the field remains 
limited by the quantity and quality of empirical traffic data. Plausible but incorrect hypotheses 
perpetuate in the absence of accurate empirical microscopic data for model development. While 
there have been a handful of true empirical microscopic freeway data sets collected, a great need 
remains for more data in general and larger varieties of conditions in particular. This need 
remains because the collection and reduction are extremely expensive, which in turn constrains 
the length of roadway monitored, the location observed, and duration of the study.  

In the past the specific study location had to be chosen before any microscopic data were 
collected or analyzed. In many cases the choice of the study site was simply determined by the 
proximity of a convenient high vantage point (e.g., a building) to observe the roadway. Given the 
fact that much remains unknown about microscopic vehicle interactions it is impossible to know 
a priori whether a specific stretch of roadway contains the entire process of interest. For 
example, most of the prior studies were collected within the queue, strictly upstream of an active 
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bottleneck.5 As a result, these data sets preclude study of the actual bottleneck mechanism that 
gave rise to the queue formation in the first place. In contrast, the data for this study comes from 
a corridor that is many miles long- including both upstream and downstream of several 
bottlenecks. The extended distance allows for subsequent microscopic analysis to select the 
study segment post hoc while also allowing the exploration of any presently unknown 
influencing factors that may prove to extend beyond the initially selected segment. For many 
phenomenon of interest it is quite likely that the study segment spans the microscopic vehicle 
interactions over several miles of freeway; e.g., Cassidy and Bertini (1999), Coifman and Kim 
(2011) and Kim and Coifman (2013) provide evidence that the nucleating bottleneck might occur 
at a location different than where macroscopic data show queuing, as has dominated the focus of 
previous bottleneck studies. Seemingly innocuous events like driver relaxation a mile 
downstream of an on-ramp could trigger huge delays upstream of the ramp.  

As noted by Hurdle and Datta, 1983; Hall and Agyemang-Duah, 1991, and Cassidy and 
Bertini, 1999, upon finding an apparent bottleneck, it is still necessary to extend surveillance 
beyond the segment to make sure there are no further factors further downstream that contribute 
to congestion and queue formation. With the extended corridor used in this study the look beyond 
is already included in the data. Of course the extended surveillance distance comes at the cost of 
limited temporal coverage of any given location on a given pass, but this detraction is countered 
by two passes in the current data extraction (and ultimately over a hundred passes in the 
complete data set, as discussed in Section 4). Needless to say, there remains a need for more 
microscopic data in general, and in particular, from a corridor that extends many miles and 
comes from a much longer time span so that spatial interactions can be revealed and variability 
can be measured.  

The remainder of this section reviews the history of empirical freeway traffic flow studies 
to place the work in context. Section 2 presents the methodology, starting with a review of the 
instrumentation on the probe vehicle and the route taken by the probe vehicle, then continuing 
into the process of extracting information from the raw data. Section 3 presents the results. The 
report closes in Section 4 with conclusions, a discussion of the limitations. 

1.1.	A	brief	history	of	empirical	freeway	traffic	flow	studies	
Traffic flow theory is approaching the limits of conventional detector data. Most of what 

we know about traffic flow ultimately comes from macroscopic data collected by point detectors, 
which inherently has limited temporal and spatial resolution. Loop detectors (and other point 
detectors) are capable of monitoring traffic at fixed locations, but point detectors can only 
monitor signals and waves in the traffic stream that propagate past the detectors, e.g., the bold 
portions of the individual trajectories in Fig. 1b as the vehicles cross two short regions 
representing different detector stations. Conventionally the point detector data are aggregated to 
average speed, flow and occupancy over 30 sec sampling periods (or longer) by operating 
agencies to monitor the network in real time; thus, discarding the limited information of any 
given individual vehicle as it passed the detector. These agencies simply do not need the fine 
precision that is required for traffic flow studies. As dictated by the Nyquist sampling criterion 
                                                
5 Bottlenecks are the locations where vehicular flow on a road network is most constrained, triggering the queues that cause the 
delays throughout the network. A bottleneck is said to be "active" when it is limiting traffic flow. Queuing traffic is merely a 
symptom of an active bottleneck; any demand above the bottleneck capacity is delayed and forms a queue that grows upstream 
from the bottleneck location. On freeways these queues can stretch for miles and impact trips that do not even pass the bottleneck 
location. 
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one can only resolve features in the data that last at least twice as long as the sampling period. 
Given the fact that one headway is on the order of a few seconds, it should be clear that the 
current conventional sampling periods on the order of 30 sec have insufficient resolution to 
understand the microscopic details of traffic flow. There have been several recent advances into 
microscopic phenomena using novel data processing on the individual vehicle actuations from 
dual loop detectors. This so called Single Vehicle Passage (SVP) methodology (Coifman, 2014) 
has shown that on average signals propagate through longer vehicles faster than shorter vehicles 
(Coifman, 2015) and that car following behavior also depends on the relative speed to the 
adjacent lane (Ponnu and Coifman, 2015). However, these loop detector based techniques cannot 
provide insight into the nuances of any specific vehicle's behavior, and any given individual's 
behavior can differ greatly from the center of the distribution that is measured by the SVP 
methodology. 

One of the biggest challenges facing the traffic flow community is the lack of sufficiently 
accurate empirical, microscopic, in situ data for the detailed analysis of vehicle interactions to 
understand the nuances of traffic flow leading to empirically based model development, 
calibration, and validation. The truth of the matter is that collecting such data is very challenging, 
and as a result, empirical advances of microscopic traffic flow theory (including car following 
behavior) are very slow in coming. By the early 2000's the traffic flow theory community 
recognized the need for accurate empirical microscopic data, which lead to the collection of the 
Next Generation Simulation (NGSIM) data sets (Kovvali et al., 2007). There are two NGSIM 
freeway data sets: I-80 with 5,678 vehicles collected over 45 min during the congested evening 
commute across 0.33 mi of freeway containing a single on-ramp; and US-101 with 6,101 
vehicles collected over 45 min during the congested morning commute across 0.42 mi of 
freeway containing one on-ramp and one off-ramp. Since the NGSIM data were released ten 
years ago the number of empirical microscopic traffic studies has exploded and the NGSIM data 
now form the basis for the vast majority of recent advances in empirical microscopic traffic flow 
theory. While the NGSIM data sets are considerably larger than any microscopic data sets that 
came before, the research community has complained that there are only two locations, each 
with: less than an hour of data, collected on a single day, only spanning short distance, and the 
surveillance region was strictly within the queue upstream of an active bottleneck. Although 
NGSIM delivered on the quantity of data, there is a growing minority of researchers who have 
found unrealistic relationships in the NGSIM data and now question the accuracy of the NGSIM 
trajectories, e.g., Duret et al. (2008); Hamdar and Mahmassani (2008); Thiemann et al. (2008); 
Punzo et al. (2011); Montanino and Punzo (2015).  

The data reduction used in the NGSIM study is not new. The process of extracting 
information from orthorectified imagery (video, movies, or high frame rate photography) 
recorded from a high vantage point was fairly common in the 1960's and 70's, relying on labor-
intensive data reduction techniques, e.g., Forbes and Simpson (1968); Treiterer and Myers 
(1974). None of these early data sets are known to remain. Turner-Fairbank Highway Research 
Center (TFHRC) collected data at one frame per second from 18 locations in 1983 and used 
microcomputers to expedite the data reduction process (Smith, 1985; Smith and Mark, 1985). 
The data were released in 1985 and were distributed by request on 9-track magnetic tape. 
Because the data sets were difficult to access they have seen little circulation.6 Unfortunately, 
                                                
6 A portion of the TFHRC data set has been preserved and as of this writing it is available from the TRB Committee on Traffic 
Flow Theory and Characteristics, at http://tft.ceng.usf.edu/docs.htm 
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most of the TFHRC locations exhibited little or no queuing, thus limiting the benefits for detailed 
study of congested traffic flow. The TFHRC data sets also share some of the detractions of 
NGSIM: small distance monitored, short duration of time, and small number of ramps at each the 
study location. Other recent examples using trajectory extraction from orthorectified imagery 
include Becker (1989) to demonstrate computer based trajectory extraction from aerial video, 
Coifman et al. (1998) to manually generate ground truth data to validate a video image 
processing based vehicle tracker, and Xin et al. (2008) to study vehicular crashes. Meanwhile, 
the various limitations of the NGSIM study have led to several smaller efforts to extract vehicle 
trajectories using similar high vantage point filming techniques (e.g., Daamen et al., 2010; 
Knoop et al., 2012; Marczak et al., 2014a; Marczak et al., 2014b).  

Of course not all empirical microscopic traffic data are derived from orthorectified 
imagery. Instrumented probe vehicles have been used to study aspects of microscopic traffic 
flow since the 1950's, e.g., Chandler et al. (1958), Herman and Potts, (1959), Brackstone et al. 
(2009), and Schorr et al. (2016). In these studies the subjects typically drive a dedicated study 
vehicle for several hours and the studies primarily focus strictly on the driver and vehicle, 
without accounting for external factors that influence driver behavior, e.g., proximity to ramps or 
bottlenecks. The study sets are typically small and they are rarely shared with the research 
community at large. There is a notable group of recent studies that focus on naturalistic driving 
(ND) and typically employ instrumented vehicles to monitor driver behavior in situ to study 
safety and the precursors for accidents, e.g., Barickman and Goodman (1999), Lee et al. (2004), 
Dingus et al. (2006), Regan et al. (2013), Blatt et al. (2014), Eenink et al. (2014). These ND 
studies typically have test subjects drive an instrumented vehicle for a period of weeks to 
months. The ND studies are opportunistic, collecting data from drivers wherever they happen to 
travel, thus limiting the number of observations of a given location. While most ND studies 
contemplated the safety issues, of the major studies reported in the literature only Dingus et al. 
(2006) had extensive measurement of distance to vehicles in the neighboring lanes and that 
represented only 10% of the data collected. Given the great detail of personal information 
involved, there are very strict guidelines to limit access to the data sets, they literally remain 
behind locked doors in secure facilities. This necessary security severely limits what can be 
studied and often creates insurmountable barriers to independent validation of any research 
findings. Nonetheless, some of the researchers affiliated with the ND studies have leveraged the 
data for microscopic car following studies, e.g., Chong et al. (2013) and Sangster et al. (2013). 

2.	Methodology	
This study uses data from front and rearward horizontal scanning LIDAR sensors 

mounted on an instrumented probe vehicle (or henceforth, simply LIDAR data) and a single 
forward mounted radar sensor to extract ambient vehicle trajectories from the sensor data. In 
each case the sensor data are processed using the approach laid out in Section 1, specifically a 
good but imperfect automated tracking process followed by manual cleaning to catch and correct 
the inevitable errors from the automated processing to provide accurate vehicle trajectory data.  

The two perception sensors have different characteristics with the LIDAR providing a 
wide angle near field of view and the radar providing a narrower angle far field of view. The raw 
LIDAR data report the distance to a target at half degree increments over a 180° arc. The returns 
should have very low measurement uncertainty, at each scan point there is either a valid distance 
measurement accurate to a few cm or no return is reported. So it is necessary to develop the 
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algorithms to segment and track vehicles within the LIDAR point cloud. With LIDAR data like 
this, most of the tracking errors arise when: classifying a given return as either a vehicle or non-
vehicle target, clustering vehicle returns into distinct vehicles, and recognizing when some of the 
target vehicle is not observed. On the other hand the radar sensor is a black box, it only reports 
tracked targets, effectively providing the automated processing in real time. In either case the 
automated processing exhibits vehicle classification and tracking errors that are subsequently 
addressed in the manual cleaning process.  

The suite of sensors on the instrumented probe vehicle is a unique combination and the 
collected data sets are finite in size, so the specific details of the automated processing is not 
likely transferrable, but in addition to explicitly having a manual correction step some of the 
concepts employed will be of interest to the community at large. Section 2.1 reviews the 
instrumentation on the probe vehicle and the route taken. Section 2.2 presents the positioning and 
speed measurement for the probe vehicle itself. Then Section 2.3 and 2.4 respectively present the 
automated LIDAR and radar processing. While it is impossible to know a priori which target is 
correctly tracked, a human can quickly assess the situation with the aid of the concurrent video 
and correctly clean the automated tracking results. So rather than attempt to teach the computer 
to handle all of the unusual exceptions, Section 2.5 develops a suite of tools to allow a human to 
quickly review and clean the results from the automated processing.  

2.1.	The	instrumented	probe	vehicle	and	tour	route	
Over ten years ago our group began instrumenting a probe vehicle with numerous 

positioning and ranging sensors to monitor the ambient traffic around it. The instrumented 
vehicle is equipped with positioning sensors (DGPS and inertial navigation) to track its location 
and ranging sensors (LIDAR and Radar) to monitor nearby vehicles in the ambient traffic. Fig. 2 
shows the fully instrumented probe vehicle. Out of these sensors, the present work uses the 
forward and rearward LIDAR that scan 180° in a plane parallel to the ground at 37 Hz and 
returns the distance to the closest object at 0.5° increments. The range of the LIDAR sensors is 
approximately 80 m, with a resolution of 0.25 cm. The forward facing radar sensor automatically 
tracks targets over a narrower field of view (roughly 12° angle of coverage), its range extends to 
120 m. The radar angle of coverage spans 3 lanes at 40 m and over 6 lanes at 80 m. Thus, the 
combination of the two data sources provides a much more complete view ahead of the probe 
vehicle than either taken alone. Unfortunately there was no radar sensor on the rear. For data 
cleaning and validation this work also uses the front and rear facing cameras that each capture a 
video stream with a resolution of 320 * 240 pixels at a frequency of 10 Hz.  

When first equipping the instrumented probe vehicle it was envisioned that extracting 
vehicle trajectories from the horizontal scanning LIDAR data would be far simpler than video 
based systems. While the LIDAR virtually eliminates positioning errors that arise in image 
processing, as it turned out the challenges of automatically detecting, segmenting and tracking 
other vehicles in the horizontal scanning LIDAR data were far greater than anticipated, e.g., the 
top down view in Fig. 3b. While a few pilot studies successfully demonstrated the feasibility of 
automatically tracking other vehicles in the LIDAR data (e.g., Gao and Coifman, 2006; Xuan 
and Coifman, 2012) they did not produce a sufficiently robust algorithm for doing so large scale 
given the magnitude of the grouping and segmentation challenges. Hence, the current study that 
couples automatic tracking with manual cleaning. In the mean time the vertical scanning LIDAR 
data from the side sensors shown in Fig. 2 were used for several studies (Lee and Coifman, 2012, 
2015; Thornton et al., 2014) and even the conventional GPS data from the probe vehicle was 
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used in several studies (Coifman and Krishnamurthy, 2007; Tong et al., 2009; Coifman and Kim, 
2011). 

While the current study only uses a single day of data, collected on September 9, 2009, 
the instrumented probe vehicle collected data on a 28 mi route (14 mi each way) along I-71 in 
Columbus, Ohio during morning and evening rush hours on various weekdays from 2004 to 
2011. Fig. 4 shows the route that spans four major freeway interchanges, several dozen ramps, 
and a number of recurring bottlenecks. Each tour consisted of 2 or 3 passes, i.e., complete round 
trips, over a roughly 2 hr period, yielding multiple observations at a given location in the given 
day. The existing instrumented probe vehicle data from the freeway include: 350 tours (700 hrs), 
from 18,500 mi of travel by the probe vehicle in the corridor collected over the span of six years. 
Interestingly, it turns out that a portion of the route along southbound I-71 was also the subject of 
Treiterer and Myers (1974).  

2.2.	Establishing	a	reference	lane	and	probe	vehicle	positioning	
The instrumented probe vehicle is equipped with a DGPS sensor, a high accuracy yaw 

gyroscope and an OBD vehicle interface providing data on the current speed and other vehicular 
information (the latter two data sources allow for dead reckoning). The probe vehicle position 
data come from a fusion of the DGPS and dead reckoning reports7, these data are then processed 
to derive the probe vehicle's speed, v, and acceleration, a.  

The pre-defined route traverses three different freeways: SR-315, I-70, and I-71, as 
shown in Fig. 4. To achieve lane level accuracy over this route without the aid of a preexisting 
map that is accurate to the lane level, this work instead uses multiple passes to deduce the lane 
location. That is to say, while the lane configuration is known, the exact coordinates of the lanes 
are initially unknown. Fig. 5a shows an example of the vehicle trajectory in two dimensions from 
a single pass, but even when the lane of travel is known, lane change maneuvers and transient 
positioning errors may bring the probe vehicle's location out of a specific lane. So using a 
method similar to Xuan and Coifman (2012) the probe vehicle's positioning data from 40 tours 
(80 passes) are combined8 on a single plane (Fig. 5b). Then the centerline of the probe vehicle's 
dominant lane of travel at each directional location along the route is found by taking the median 
laterally across of all passes at a given longitudinal location (Fig. 5c) and finally the adjacent 
lanes are identified by shifting an integer number of lane widths (12 ft), as shown in Fig. 5d. 
Distance along the route is calculated from the cumulative distance traveled along the dominant 
lane at each location, averaged across all passes out of the 80 that actually traveled within that 
lane at the given location. This distance along the road is then used even when the dominant lane 
of travel differs from probe vehicle's lane of travel in a particular pass. Obviously there will be 
small differences in the actual distance due to road curvature (both across lanes, and even within 
lane depending on the lateral position within the lane), so the lane configuration is also recorded 
in two dimensions (northing and easting) in case more precision is needed. In any event, this 
reference distance is only used for position information as a common reference across different 
passes. It is not used to measure speed or acceleration, which are measured directly from the 
recorded position and speed data for the given pass. 

                                                
7 The details of the localization data and the data fusion process will be reported in forthcoming publications. 
8 This task is the only one in this report that uses more than a single day of data, and the multiple days are only used in this step to 
control for the possibility of any transient out of lane positioning when establishing the reference lane. 
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There are several known mandatory lane change maneuvers along the tour and there is no 
single lane that persists throughout the route. So this work creates a hypothetical continuous 
reference lane in each direction from which all other positions are measured and this lane is 
called lane X9, i.e., the longitudinal reference distance noted above is assigned to lane X and 
lateral distance across the road is also specified relative to the reference lane (both in meters and 
in terms of the discrete number of lanes). For naming purposes all vehicular lanes of travel are 
specified relative to lane X with values increasing from the passing lane on the left to the slow 
lane on the right, e.g., lane XIII is three lanes to the right of lane X. This reference persists even 
when lane X does not physically exist at a given location, e.g., the probe vehicle might have to 
take a mandatory lane change maneuver from lane X to lane XI before the physical lane X 
diverges, but the lane naming scheme does not change after the diverge and the instrumented 
probe vehicle will remain in lane XI until undertaking its next lane change maneuver. The 
complete lane configuration is recorded as a function of longitudinal distance along the route.  

2.3.	Automated	detection	and	tracking	of	ambient	vehicles	in	the	LIDAR	data	
The automated LIDAR processing is broken into three steps: finding vehicles within a 

single LIDAR scan, tracking vehicles across successive LIDAR scans, and associating vehicles 
between the front and rear whenever there is an overtaking of/by the instrumented probe vehicle. 

2.3.1.	Processing	each	LIDAR	scan	individually	
The first stage of processing the LIDAR data is to take each LIDAR scan individually to 

group returns into clusters and then classify each cluster as being "vehicle" or "non-vehicle". The 
key distinction is that vehicle clusters are known to be vehicles while the non-vehicle clusters 
could be objects outside the right-of-way, non-vehicle returns when the probe vehicle pitches 
forward due to braking and the front LIDAR sensor scans the road surface instead of any 
vehicles, and un-trackable vehicles that are partially occluded. This work takes a three-step 
process to group the LIDAR returns into clusters, as follows: (1) grouping angularly adjacent 
points into discrete clusters, (2) assigning clusters to discrete lanes, and (3) consolidating 
clusters. 

The clustering is done in the original LIDAR coordinate system that moves with the 
probe vehicle. Fig. 6a shows an example of a single LIDAR scan where the x and y values are 
relative to the probe vehicle with (0,0) at the given LIDAR sensor unit. There are 361 returns in 
each LIDAR scan, corresponding to each 0.5° increment between -90° and 90°, with each return 
containing the range to the target (up to 80 m) or an indication that there was no return. The "no 
return" occurs either because there was no target before 80 m or if there was an intervening 
target the return was either too weak or too noisy to be resolved by the LIDAR sensor. The 
grouping algorithm steps from one angle to the next in a single LIDAR scan and tests whether 
the scans from the two successive angles are close enough to be grouped together into a cluster. 
Vehicle objects10 will generally appear either as: a longitudinal line for a vehicle immediately 
adjacent to the probe vehicle (e.g., the cluster at 0<y<4 m in the right lane of Fig. 6b); an "L" 

                                                
9 Roman numerals are used to denote lanes relative to the reference lane to avoid potential confusion with any local lane 
numbering, as will be the case in subsequent work that adds concurrent loop detector stations, and the reference lane number is 
arbitrarily set to X so that positive numbers IX to I can be used for lanes to the left of X. 
10 The term "object" is used to describe a physical thing that is indeed a discrete object. An object may or may not be seen in a 
LIDAR scan. If an object is correctly identified there will be a unique cluster of LIDAR returns (usually spanning successive 
angles) that corresponds to the object. 
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shaped corner for a vehicle ahead/behind of the probe vehicle in an adjacent lane (e.g., the 
cluster at 5<y<10 m in the right lane of Fig. 6b); or a lateral line for a vehicle immediately 
ahead/behind of the probe in the same lane (e.g., the cluster at y=8 m in the center lane of Fig. 
6b).  

Given the probe vehicle's longitudinal distance along the route the current lane 
information from Section 2.2 is retrieved, projected into the probe vehicle's coordinate system 
and the centerlines of the lanes are found in the LIDAR coordinate system, e.g., as shown with 
dashed curves in Fig. 6b. At this stage all resolvable clusters that are within the demarcated 
roadway are retained as being on-road and assigned to a given lane while the off-road clusters 
are discarded as non-vehicle returns. 

While the clustering seeks to achieve a one-to-one matching between objects in the world 
and clusters in the given scan, sometimes a single object will be over-segmented into multiple 
clusters (e.g., because portions of a high-clearance vehicle are not visible as a contiguous object 
in the LIDAR scanning plane) or several different objects will be over-grouped into a single 
cluster (e.g., because two separate vehicles are traveling very close together). The processing is 
tuned to over-segment long vehicles at this stage, which is a trade-off to minimize over-grouping 
vehicle clusters.11 The rectangular bounding boxes in Fig. 6b show the identified on-road clusters 
for a typical scan at the conclusion of this clustering process (in this case the raw LIDAR data 
are shown with dark points in Fig. 6a and lighter points in Fig. 6b). Many of the automated 
clustering errors will be caught in the later stages of the automated processing while the 
subsequent manual cleaning discussed in Section 2.5 is employed to deal with the more complex 
scenarios that may confound the automated processing. 

2.3.2.	Processing	across	successive	LIDAR	scans	
After each LIDAR scan is processed the discrete targets in successive scans are 

associated with one another to form a vehicle track. While the shape and appearance of the 
clusters associated with a given target vehicle might change from one scan to the next, the 
position of the nearest corner of the bounding boxes from a given vehicle's clusters in successive 
scans should evolve slowly. One key issue is that if a return at a given scan angle is too weak the 
LIDAR sensors will report "no return" even if there is an object closer than the maximum range 
of 80 m. This situation typically arises for targets further than 40 m away from the sensor and as 
a result, far target vehicles can flicker in and out of the LIDAR returns from one scan to the next. 
So the tracking process also tolerates a target disappearing for a short period of time. Whenever a 
tracked target disappears for longer than 1 sec the vehicle track is closed and is assigned a unique 
target ID number. Additionally, the target's location in global coordinates and cumulative 
distance of the target in each LIDAR scan is also calculated from the combination of the relative 
location to the probe vehicle and the probe vehicle’s location in the global coordinate system. 
Finally, in the event that a target vehicle is even with the LIDAR sensor (longitudinal distance 0 
m), there is a good chance that the nearest corner is unobserved, with only the nearest side of the 
target seen. The visible portion of the target is retained, but the position is marked as an 
"occluded end" to clearly indicate that the exact longitudinal location is unknown and that the 
target might simultaneously appear in the other LIDAR. 

                                                
11 This preference to over-segmenting vehicles is chosen because it is a lot easier to manually join over-segmented clusters than it 
is to manually segment over-grouped clusters. 
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2.3.3.	Associating	targets	between	the	front	and	rear	LIDAR	sensors	
Up to this point the front and rear LIDAR data are stored and processed separately. This 

step associates vehicle objects that are seen in both the front and rear LIDAR scans. Whenever 
the instrumented probe vehicle overtakes a shorter vehicle, as that target disappears from the 
front LIDAR scans it should soon appear in the rear LIDAR scans (or vice versa for a vehicle 
overtaking the probe vehicle). So this step seeks to identify and group those tracks belonging to a 
given vehicle that were seen separately in the two LIDAR views. During these overtaking 
maneuvers if the target vehicle is longer than the probe vehicle it should briefly be visible in both 
the front and rear LIDAR scans, or if it is shorter it should briefly disappear from both. In any 
event, except for very short vehicles (e.g., motorcycles) there is not enough room for more than 
one target vehicle per lane to disappear in the unseen area next to the probe vehicle. So when a 
target in an immediately adjacent lane disappears completely next to the probe vehicle due to 
overtaking, it will be associated with the next emergence on the same side in either LIDAR. 
Recall that the prior step specifically marked any target that ends (starts) with an occluded 
cluster next to the probe vehicle, and if so, except for very rare lane change events there has to be 
a corresponding trajectory that starts (ends) with an occluded cluster on the same side of the 
probe vehicle. The time of the occluded ends of the two corresponding trajectories usually are 
very close; thus, allowing the automated process to group same-target trajectories with occluded 
ends and link them together. In the event that a long enough period of time elapses the automated 
processing will not associate the two occluded ends, in which case the two observations of the 
same vehicle will retain their separate, distinct tracks and target IDs at this stage. In fact a target 
vehicle can bounce back and forth between the two LIDAR sensors when it is traveling at a 
speed close to that of the probe vehicle; as such, each new appearance is recursively associated 
with the previous observations of the given target vehicle. This process ends once the chain of 
linked tracks starts and ends without an occluded end. All but one of the target IDs associated 
with this chain of observations are discarded and the remaining target ID is assigned to all of the 
clusters that were associated in the chain. 

2.4.	Automated	detection	and	tracking	of	ambient	vehicles	in	the	radar	data	
As noted previously, the radar already tracks targets within its coordinate system and 

only reports the tracked targets. Still there are non-vehicle targets reported by the radar sensor 
that need to be eliminated and over-segmented vehicles that need to be combined. Furthermore, 
the radar targets must still be associated with their respective lanes and it is necessary to establish 
the world coordinates of the tracked vehicles. This processing follows the same steps laid out in 
Section 2.3 for the LIDAR data, with the exceptions that there is no need to group clusters or 
track the targets as reported by the radar sensor, and instead of associating front and rear targets 
this task associates the radar targets with the forward LIDAR targets. 

2.5.	Manually	cleaning	the	automatically	tracked	vehicles	
Even if the automated system is expected to be highly accurate all results need to be 

manually validated to ensure the data quality necessary for developing traffic flow theory. Since 
the human already has to be in the loop, this work seeks to leverage the discerning abilities of 
that human reviewer to quickly make any necessary corrections and reduce the required 
complexity of the automated processing. So instead of employing a "superior" automated system, 
having the human clean up the data allows the use of a "pretty good" automated system to do the 
majority of the processing followed by supplemental manual cleaning. Thereby finding a cost 
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effective balance between the power of the automated system and demands on the human in the 
loop to yield a high quality data set that is beyond the capabilities of a "superior" automated 
system while only encumbering a fraction of the labor costs from a "purely manual" approach. 
The details of these steps are summarized as follows. 

The instrumented probe vehicle is equipped with 10 Hz video cameras facing forward 
and rear, concurrent with the two LIDAR sensors. The video feeds are time stamped with the 
same clock used for the LIDAR, radar, and localization sensors. To facilitate comparison 
between the LIDAR and video, it is necessary to project the LIDAR data into the video plane 
using a homography transformation that is calculated using conventional approaches. With the 
LIDAR data projected into the video image plane for both the front and rear views the human 
user can quickly and accurately assess the automated tracking errors. In most cases the human 
can correct the problems (e.g., grouping over-segmented clusters on a frame by frame basis), at 
other times the human can at least exclude any problematic areas (e.g., when the LIDAR 
scanning plane strikes the road surface).  

The design of a graphical user interface (GUI) tool is key to enabling efficient manual 
validation by a human reviewer. Fig. 7 is an example of the main GUI display at a typical time 
step. Fig. 7a shows a top down view of the two concurrent LIDAR scans combined into a single 
view, with the forward LIDAR at the top, rear LIDAR at the bottom and the probe vehicle at the 
center of the image. The LIDAR sensors are each located at the origin of their respective portion 
of the plot (note the two sets of labels on the vertical axis) with the gap between the two regions 
corresponding to the distance between the front and rear LIDAR sensors on the probe vehicle. 
The raw LIDAR returns are shown with points and numbered bounding boxes are shown around 
the various targets being tracked. To the trained eye many of the automated tracking errors 
become evident in this plane, without referring to the video. Fig. 7b-c show the concurrent front 
and rear video with the LIDAR targets superimposed. Fig. 7e-g show separately the measured 
trajectories over time, in this case with lane XI to the left, lane XII the probe vehicle's lane of 
travel, and lane XIII to the right (the bold curve in each plot is the probe vehicle's trajectory, 
shown only for reference as a dashed curve in lanes XI & XIII). By simultaneously reviewing all 
of these plots the human reviewer can spot inconsistent trajectories on the right hand set of plots, 
incorrectly grouped clusters on the left hand set of plots, and the correspondence between the 
LIDAR and video in the middle plots. Note that the clusters and trajectories in Fig. 7 illustrate 
the ambient vehicle data near the end of the manual validation, so few of the automated tracking 
errors remain in this example. Not shown in the figure are the actual navigation and data 
cleaning controls that are implemented with various virtual buttons below the graphical display. 
The three most significant tools for data cleaning involve: (i) eliminating any remaining non-
vehicle returns, (ii) merging clusters from over-segmented vehicles and splitting clusters from 
over-grouped vehicles, and (iii) connecting multiple partial trajectories that come from a single 
vehicle. The navigation tools include the option to move forward and backwards in time, playing 
back the concurrent temporal evolution in all seven panels of Fig. 7.  

While the functionality of the user interface continues to evolve, our current estimate is 
that it should take roughly 8 person-hrs to do the manual cleaning for each 2 hr tour. It is also 
worth noting that although this work sought to maintain a given target ID across short 
disruptions lasting up to 1 sec, there was little effort to maintain a unique ID across longer gaps. 
So a vehicle that is visible within the video field of view may receive several target ID's if it goes 
unseen by the perception sensors for an extended period. Likewise, there are a few distinct 
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vehicles in the validation video that appear to enter and leave the camera's field of view during 
periods of stop and go traffic. No effort was made to associate vehicles across such large gaps. 

3.	Results	
As noted earlier, the current work extracted and manually validated roughly two hours of 

data from the ambient traffic as the instrumented probe vehicle made two passes over the 28 mile 
round trip on I-71 in Columbus, Ohio, (Fig. 4) during the evening peak on a typical day 
(September 9, 2009 in this case). The particular tour includes both recurring congestion and 
unrestricted conditions. Figure 8 shows the resulting speed spacing relationships for the 
instrumented probe vehicle on each of the four passes, two northbound and two southbound. 
Almost all of the congested traffic is seen when the instrumented probe vehicle is traveling away 
from the central business district (CBD), as would be expected during the evening rush hour. 

Fig. 9 shows a portion of the first pass on I-71 northbound through two closely spaced 
freeway interchanges. Traffic moves from bottom to top and the schematic in Fig. 9d shows that 
traffic enters I-71 in the bottom right of the figure via a connector ramp from I-70 westbound and 
exits I-71 on the top left of the figure via a connector ramp to I-670 westbound. The three time 
space diagrams show the ambient vehicles in the probe vehicle's lane of travel, XI, and the two 
immediately adjacent lanes. Like Fig. 7, the probe vehicle's trajectory is shown with a bold solid 
line in the lane of travel and a bold dashed line in the other two lanes for reference. Ambient lane 
change maneuvers are highlighted with triangles pointing the direction of the maneuver (the 
empty triangles denote the exited lane and solid triangles denote the entered lane). In general the 
lane changing vehicles are moving to the left in this section as several of the vehicles entering 
from I-70 proceed to a subsequent exit to I-670, including two vehicles that cross two lanes in 
rapid succession. Also note the slow wave passing in lane XII. 

Fig. 10 picks up roughly 0.5 km downstream of Fig. 9 using the same notation, with the 
lane numbering, time and distance consistent to the same global reference in both figures. The 
schematic in Fig. 10d shows that there is a connector ramp to I-670 eastbound on the right and an 
entrance ramp from Broad St. on the left. The probe vehicle starts in lane XI and changes to lane 
XII within the segment. The segment has rapidly changing traffic patterns, at the upstream end 
lane XIII on the right primarily has vehicles heading to the I-670 connector ramp and the lane 
changing patterns show a general movement to the right, with additional vehicles changing lanes 
to reach the exit to I-670, including one vehicle that crosses two lanes in rapid succession. This 
vehicle entered the segment immediately behind the instrumented probe vehicle then changes 
lane to the right as the probe vehicle encounters a slow wave, that vehicle then rapidly 
approaches a queue of nearly stopped traffic right before making the second lane change 
maneuver with a very small spacing to the last vehicle in the queue. Then at the head of the 
queue in lane XII (roughly 7,280 m) from the concurrent video it is clear that there is a box truck 
almost stopped in the middle of the road. Although beyond the range of the LIDAR, just before 
this truck disappears from the rear view camera it is apparent that the truck moves across lane 
XIII to get to the I-670 connector ramp. As the probe vehicle approaches the I-670 connector 
ramp, lane XIII is occluded by the stopped vehicles in lane XII and once past the queue, very few 
vehicles remain in lane XIII because most have taken the ramp to I-670 E. Meanwhile, several 
vehicles take advantage of the large gap ahead of the stopped truck and the fact that lane XIII is 
now nearly empty. In short order four vehicles (including the probe vehicle itself) move from 
lane XI to lane XII, in part to avoid an upcoming queue in lane XI arising from the combination 
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of the left-side on-ramp located at the very end of the link and a recurring bottleneck further 
downstream.  

At the large vertical range shown in Fig. 9-10 it is difficult to see the subtle vehicle 
interactions. Fig. 11 shows 1.5 min of data during free flow conditions. This time the ambient 
target vehicle locations are shown in the probe vehicle's coordinate system to facilitate the 
display of the inter-vehicle relationships. The relative longitudinal distance is set to zero at the 
rear of the instrumented probe vehicle with the rear view LIDAR data below and the front view 
sensor data above, offset by the probe vehicle's length. In this case the probe vehicle starts in the 
center of three lanes, moves to the left lane at time 0 in the plot, overtakes a slow moving semi-
trailer truck (veh 21) and SUV (veh 22), and then returns to the original lane roughly 30 sec later, 
as shown with vertical thin dashed lines. For this example the tracked vehicles from center lane 
are labeled 2• and the vehicles in the passing lane are labeled 1•. The LIDAR vehicle positions 
are shown with bold curves and the radar positions with thinner curves. The probe vehicle's 
speed is shown with a bold dashed curve, relative to the same vertical scale. The instrumented 
probe vehicle is initially behind veh 2112, changes lanes at 0 sec and then accelerates to match the 
speed of its new leader, veh 11, that is roughly 80 m ahead, while the new follower, veh 12, 
slows down and creates a larger spacing in response to the instrumented probe vehicle's entrance. 
At about 5 sec the probe starts to overtake the semi-trailer truck. Note that the forward sensors 
see the rear of a given target while the rear LIDAR sees the front of a target, so the trajectory 
initially from the rear of the semi-trailer truck seemingly shifts to the right as its front 
subsequently emerges behind the probe vehicle. It is possible to measure the length most 
vehicles that overtake or are overtaken by the probe using the reported data, in which case the 
coordinates of the front (rear) bumper can be extrapolated from the observed rear (front) bumper 
location, thereby eliminating these visual discontinuities. The probe then passes veh 22 ahead of 
the truck before decelerating and returning to the center lane roughly 30 sec after the first lane 
change maneuver. Just before undertaking this return maneuver veh 25 enters the center lane 
from the right, roughly 30 m ahead of the probe, and the probe initially slows to increase the 
spacing to its leader. Ordinarily the sensors can only see one vehicle ahead and behind in the 
self-lane, but upon returning to the center lane at 30 sec the self-lane veh 21 and 23 remain 
intermittently visible because the probe vehicle is on a curve and so the closest vehicles do not 
completely occlude the further vehicles.  

4.	Discussion	and	conclusions	
This research has developed a process for extracting and cleaning empirical microscopic 

vehicle relationships by tracking ambient vehicles observed from an instrumented probe vehicle 
traveling through the freeway traffic stream. In this case the vehicle is equipped with front and 
rear horizontal scanning LIDAR sensors with near-rage wide angle coverage and a forward 
facing radar with far-range narrow angle coverage. Given the inherent difficulty collecting 
empirical microscopic data there are only a few existing data sets for the research community, so 
this work provides a much-needed empirical data set for further traffic flow theory developments 
(as of publication the data have been posted to Coifman, 2016). 
                                                
12 The wobbles in veh 21 trajectory starting at (-30 sec, 40 m) reflect the fact that the radar jumped from one feature to another on 
veh 21 as it was tracking the vehicle. Although not done in this example, the wobble can be cleaned using a filter to follow the 
upstream end of the peaks. 
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Key to this extraction is a very powerful approach that can be transferred to many other 
data reduction problems. Rather than choosing between an expensive "superior" automated 
processor with cursory manual validation or labor-intensive manual data processing, recognizing 
that (i) each successive marginal gain in automated processing becomes progressively more 
expensive, (ii) the human must still be in the loop to validate the data, (iii) with the right user 
interface the marginal cost is small to design the system from the start to leverage the discerning 
abilities of that human reviewer to clean the uncommon complex events that stymie the 
automated processor, it is possible to reduce the complexity of the automated processing without 
sacrificing data quality. If done right, a "pretty good" automated system to do the majority of the 
processing followed by supplemental manual cleaning (i.e., over and above simple validation) 
can produce a high quality data set that is beyond the capabilities of a "superior" automated 
system while only encumbering a fraction of the labor costs from a "purely manual" approach. 

The present work is an important milestone in a larger instrumented probe vehicle study 
that began over ten years ago. It is proof that the automated data extraction combined with 
manual cleaning is an effective means for generating empirical microscopic vehicle interaction 
data with sufficient precision to be used to advance traffic flow theory, e.g., for model 
development and calibration. Still, this work is only the first step in a larger data extraction; this 
pilot study only extracted the vehicle trajectories from the front and rear scanning LIDAR 
sensors and forward facing radar sensor for a single 2 hr tour. As noted in Section 2.1Y, the 
overall data collection in the corridor consists of over 300 similar tours collected over a period 
spanning 2004 to 2011. As these data are extracted and cleaned up they will be shared with the 
research community, starting with the 2 hr from this report. We anticipate that the data will 
reveal behavioral phenomena and capture previously unknown influencing factors, e.g., Coifman 
et al. (2003), Cassidy and Rudjanakanoknad (2005), Laval and Daganzo (2006), Chung et al. 
(2007), Wang and Coifman (2008), Duret et al. (2010), and Xuan and Coifman (2012). 

4.1.	Important	points	and	limitations	of	the	current	extraction	
One of the objectives of this study is to provide microscopic data on vehicle interactions 

to foster the development of traffic flow theories and as of publication the data have been posted 
to Coifman (2016). In this context, it is important for consumers to understand how to interpret 
the data correctly. First off, when working with the extracted vehicle trajectory data if there is no 
recorded lead vehicle in the data, it does not mean there is no lead vehicle in the real world. 
When this situation arises in the final extracted data it simply indicates that the lead vehicle was 
not seen by the perception sensors. In short, the "no leader" data does not provide any 
information on how the follower responds to the unseen leader. Or to put it another way, the 
vehicle trajectory data are most valuable when both a leader and a follower are observed in a 
given lane. 

Since the probability that a vehicle goes unseen increases with the distance from the 
sensor, another issue to keep in mind while working with these data is the nature of the sensors 
and the potential for systematic sampling bias. For example, the strength of a LIDAR return 
varies inversely with the distance to the target. If a given return is not strong enough the LIDAR 
sensor disregards the reading even if the target is within the 80 m range and instead reports "no 
return" at that scan angle. Thus, it is more likely that distant vehicles go unseen due to poor 
returns compared to closer vehicles. This fact will impact subsequent uses of the data, for 
example, when plotting speed-spacing from the probe vehicle to the ambient vehicles as per Fig. 
8. At low speeds the spacing to ambient vehicles is small enough that few vehicles will go 
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unseen in the LIDAR data, but at higher speeds the range of true spacings becomes large enough 
that a disproportionate number of distant vehicles could go unseen, so at a given speed the 
distribution of recorded spacings is skewed lower than the distribution of true spacings. This bias 
is less in the forward facing radar, but the radar sensor's angle of view is much narrower than the 
LIDAR and even though the radar's rage is much larger it is still finite. So consumers of the data 
are warned to treat periods with no lead vehicle with caution. This caution extends to averaging, 
e.g., when calculating an empirical speed spacing curve the greater the distance to a lead vehicle 
the more likely it will not have a return and thus, at a given speed the smaller spacings are likely 
to be over represented in the recorded data. In some situations it may be possible to compensate 
for this issue, e.g., often times the vehicle trajectories will flicker in and out, allowing for quick 
identification of periods when there is an unseen leader. Alternatively, for the most precise 
applications, the user can refer to the concurrent video to identify periods when there is a vehicle 
that is not recorded in the LIDAR. 
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Figure 1, Hypothetical vehicle trajectories within a single lane over 1/3 mile, bold curves observed, faint 

curves unobserved, as seen by: (a) a conventional probe vehicle, (b) two loop detector stations, 
(c) ambient vehicles from the instrumented probe vehicle, (d) the combination of b and c to 
provide a more complete picture than either source alone. 
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Figure 2, The instrumented probe vehicle with the various sensors highlighted, including the forward and 

rearward LIDAR sensors, forward radar sensor, DGPS, OBD data, and cameras for collecting 
validation video. 
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Figure 3, Forward LIDAR (a) superimposed on the corresponding video frame, and (b) as viewed in the 

original scanning plane parallel to the ground. The projection on to the video frame makes it 
easier for a person to distinguish between different vehicle and non-vehicle targets. 
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Figure 4, The instrumented probe vehicle made two round trips of the highlighted freeway route in 

Columbus, Ohio, USA over approximately 2 hr during the evening peak on September 9, 2009. 
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Figure 5, An example of establishing the reference lane, (a) a single directional pass of the probe 

vehicle, (b) overlapping 80 passes, (c) dominant lane identification, (d) calculated location of all 
remaining lanes. 
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Figure 6, (a) Raw LIDAR returns in a typical scan from the front LIDAR sensor, (b) the corresponding 

bounding boxes for the identified on-road clusters after being assigned to specific lanes. The 
centerline of each lane is denoted with a dashed curve and the probe vehicle always travels in 
the lane passing through the origin of the LIDAR coordinate system. 

 
  



26 

 
 
Figure 7, An example of the graphical user interface used to review the vehicle grouping, (a) front and 

rear LIDAR returns in the ground plane at 16:19:00.10 and numbered bounding boxes around 
the tracked targets. Corresponding video frames from, (b) the front camera, and (c) the rear 
camera. (d) The current location of the probe vehicle. The extracted vehicle trajectories from 
shortly before to shortly after the current instant shown in a-d, with this current instant shown by 
a vertical dashed line in (e) lane XI, to the left of the probe vehicle, (f) lane XII, the probe 
vehicle's lane of travel, and (g) lane XIII, to the right of the probe vehicle. The bold curve in 
each trajectory plot is the probe vehicle's trajectory, shown only for reference with a dashed line 
in lanes XI and XII.  
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Figure 8, The resulting speed-spacing relationships exhibited by the instrumented probe vehicle as 

measured from the combined LIDAR and radar data over the four passes, (a) northbound 1, (b) 
southbound 1, (c) northbound 2, (d) southbound 2. The various plots show many individual 
curves rather than points, where each curve is one contiguous period with a single tracked 
leader. In the free flow regime note that the exhibited free speeds reflect the two different speed 
limits along the tour. 
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Figure 9, Ambient vehicle trajectories around the probe vehicle on I-71 from the LIDAR data in (a) lane X, 

(b) lane XI and (c) lane XII. Traffic moves from bottom to top with the probe vehicle strictly in 
lane XI, as indicated with a bold curve (this trajectory is repeated for reference in the other 
lanes with a dashed curve). The schematic in (d) is roughly to scale with the distance axis in the 
plots and shows that lanes XII and XIII join from I-70 westbound around 5,850 m, lane XIII exits 
at Broad St. around 6,200 m, lane X leaves and lane XII splits to I-670 westbound around 6,400 
m. Triangles indicate the direction of lane change maneuvers with empty triangles denoting an 
exit and solid triangles denoting an entrance.  
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Figure 10, Ambient vehicle trajectories around the probe vehicle on I-71 from the LIDAR data in (a) 

lane XI, (b) lane XII and (c) lane XIII. Traffic moves from bottom to top and the notation follows 
from Fig. 9. The probe vehicle's trajectory is shown with a bold curve starting in lane XI and 
moving to lane XII around 7.300 m, just past a major connector ramp to I-670 eastbound, as 
shown in (d) the schematic, which is roughly to scale with the distance axis in the plots. Most of 
the vehicles seen in lane XIII were destined for this ramp. A box truck in lane XII had stopped at 
around 7,280 m in lane XII and was waiting to move to cross lane XIII to go to the I-670 ramp. 
At the end of this segment a ramp joins on the left with a merge lane, the resulting queue is 
evident in lane XI.  
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Figure 11, An example the relative inter-vehicle relationships as the instrumented probe vehicle 

completes an overtaking maneuver. Vertical distance is shown relative to the rear of the probe 
at 0 with distance increasing in the forward direction of travel. The initial lane change 
maneuver from the center lane to the left lane occurs at 0 sec in this plot and the subsequent 
return to the center lane at 30 sec, as indicated by vertical dashed lines in the figure. Vehicles 
in the exited center lane are labeled 2• and the left lane are labeled 1•. The LIDAR vehicle 
positions are shown with bold curves and the radar positions with lighter weight curves. The 
probe vehicle's speed is shown with a bold dashed curve, relative to the same vertical scale. 
Time zero in this plot corresponds to 60409 sec in the data set. 
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